LID VAN

Yori Verbist

ASSOCIATIE

Mouth Animation

Realization

Bachelor Applied Computer Science

Academic year 2020-2021

Campus Geel, Kleinhoefstraat 4, BE-2440 Geel

THOMAS

MOIRC

Contents

1__Introductionl 3
[1.1 Computer Vision| e 3
.2 Generative Adversarial Networkl. 4

Y 5 6
2.1 Pre-trained Lip-Sync Expert|.o oo 6
B2 Generalon oo e 6
[2.3 Penalizing inaccurate lip generation| 7
P4 Visual quality generator] 7
... 7

83__Dutch Datal 8
B.1 Original Datal o 8
3.2 Multiple people VS one person| oL 9
8.3 Collecting data] 9
3.4 Cleaning datal 9
8.0 Fine-tuning] Lo 9

4__Face Detectionl 10
4.1 Face Recognition| oo 10
(2 Predicting mouth movements| 10

[5>_Multiple Faces| 12
BI TFace defectionl. - « « « v v v ot 12

Web Appl e e e 12
b.2.1 Multiple people| 12
...................................... 13
b.2.3 Multiple people talking| oo 13

1 Introduction

Why are we here? Most of us are here for a simple reason: Al is becoming more and more a part
of our daily life. We already see some powerful and amazing new possibilities and realizations
with AI. That’s why we want to know more about it: how it works and how we can implement it
ourselves That’s what this thesis is about, implementing those technologies ourselves.

Here you can read how I implemented AI that autonomously generates dynamic mouth move-
ments on top of a originally static picture, given an audio sample. This results in the illusion, a
natural feel, that the person in the picture is really talking to you.

Today the day it’s hard to predict what Al will fully capable of. Because Al techniques advances
so rapidly, it’s hard to keep track on what Al is already capable of. That’s also the goal of this
project, to show what Al is capable of today. There are a lot of fields in Al ranging from computer
vision to natural language processing. I'm mostly interested in CV that’s why I mainly chose this
project.

1.1 Computer Vision

How important is vision? We use it everyday, to look where we're going, prepare food, watch
videos, etc. From all our senses, it gives the most information about the state of the world and
how to act on it. This is the reason why scientist are trying to give computers vision, creating the
field of computer vision.

So what is computer vision exactly? It’s letting a computer ’see’. Well, not seeing like we
humans do but on pixel level and learning patterns in these pixels. All pictures and videos exist
of these pixels. They’re colored points on a screen, consisting of three values, red, green and blue
also called RGB values.

[90, 0, 53]

ls

[249, 215, 203]

»
FETET e -

[213, 60, 67]

Figure 1: Example of the pixel values of an image

Now we know how computers see pictures, how do they recognize faces? This is done by putting
self-learning filters on top of the picture. This is called a convolution, every filter is going to detect
different parts of the face. All these different kind of filters are then put together to detect more
complex patterns. Some examples can be seen in figure [2] In face recognition we use filters that
detect facial features, like eyes and a nose.

By using different filters, which all search for useful patterns, we create multiple filtered images
from the original image. To keep this expansion under control and to reduce it to the essence of
the pattern, we use pooling techniques.

Figure 2: Examples of what the results of the different filters will look like.

1.2 Generative Adversarial Network

A generative adversarial network (GAN) is a network that learns by generating images and evalu-
ating how realistic these generated images are. It consists of a generator and a discriminator.

The generator network is going to try to create a realistic image. To do this we need some kind
of metric that tells the network what a realistic image is. In basic neural networks a mathematical
metric is used, like the MSE loss. But it’s hard to mathematically calculate what a realistic image
looks likes. As you can see in figure [3] the error between the original and all the other images is
the same, while they’re clearly all different. That’s why the discriminator network exists.

converged image
(best SSIM)

reference equal-MSE
image hypersphere

converged image
(worst SSIM)

Figure 3: MSE used to calculate the distance between two images, the inner and outer images.
Source:[1]

The generator does the reverse of the convolutions that are done for face detection, called de-
convolutions. Instead of getting only the essence of the picture, they start from the essence and

up-sample to a normal image.
The discriminator network is a neural network trained for classification. When given an image, it
will tell if that images looks real enough compared to the images it was trained on.

The generator and the discriminator have a competition between themselves. Where the goal of
the generator is to create realistic images and fool the discriminator, the goal of the discriminator
is to know when a unrealistic image is created by the generator. Because of this, they always get
better and better to out-preform the other.

2 Wav2Lip

I started searching for papers that did something around mouth/lip generation. This is when I
found this amazing work of a research group[2]. It’s the same group that worked on LipGAN[3].

o Pre-trained S L
| Lip-Sync Expert WILCEOEE

Generated frames

.* |
c_,v.\P(\O“s | L1 Reconstruction loss
Ground-truth segment with lower-half masked, channel-wise Co“ner‘

concatenated with ancther random segment L4
" & E

~
Se
~|

Binary
cross-entropy
Ground truth segment loss

ﬁ“ Visuol Quality Discriminator

Generator

Figure 4: An overview of the model. The important components are discussed below.

2.1 Pre-trained Lip-Sync Expert

This discriminator is pre-trained and should not be fine-tuned on the generated images. The
face reconstruction loss is calculated on the whole face, the lip region is only 4% of the total
reconstruction loss.

So a lot of surrounding image reconstruction is first optimized before the network optimizes
the lip region. That’s why it’s important to have this additional discriminator. Also by using a
pre-trained discriminator there are no noisy generated images from the generator. Because the
discriminator will focus more on the visual artifacts instead of the audio-lip correspondence. It’s
also important to train the discriminator on more than 1 video frame.

Model Fine-tuned? | Off-sync Acc. || LSE-D | LSE-C

Tv =11[3] v 55.6% 10.33 3.19
Ours Tv =1 X 79.3% 8.583 4.845
Ours Tv = 3 v 72.3% 10.14 3.214
Ours Tv = 3 X 87.4% 7.230 6.533
Ours Tv =5 v 73.6% 9.953 3.508
Ours Tv =5 X 91.6% 6.386 | 7.789

Table 1: Here you can see the differences between the amount of video frames (Tv) and if it’s
further fine-tuned during training or not.

In table [I] you can see that a larger temporal window allows for better lip-sync discrimination.
On the other hand, training the lip-sync discriminator on the generated faces deteriorates its
ability to detect off-sync audio-lip pairs. Consequently, training a lip-sync generator using such a
discriminator leads to poorly lip-synced videos.

2.2 Generator

The generator contains three blocks: Identity Encoder, Speech Encoder, Face Decoder.
The Identity Encoder (blue blocks) is a stack of residual convolutional layers that encode a random
reference frame concatenated with a pose-prior (target-face with lower half masked).

The Speech Encoder (green blocks) is also a stack of 2D-convolutions to encode the speech
segment. These are then concatenated together.

The decoder (red blocks) is also a stack of 2D-convolutional layers, along with transpose convo-
lutions for up-sampling. The generator is trained to minimize the L1 reconstruction loss between
the generated frames and ground-truth frames.

2.3 Penalizing inaccurate lip generation

Since the discriminator is trained on 5 contiguous frames at a time, we would also need the
generator to generate 5 frames. This is done by sampling a random contiguous window for the
reference frames, to ensure as much temporal consistency of pose, etc. across the window.

The generator processes each frame independently, so they stack the time-stamps along the
batch dimension while feeding the reference frames. While feeding the generated frames to the
expert discriminator, the time-steps are concatenated along the channel-dimension as was also
done during the training of the discriminator.

The resulting input shape to the expert discriminator is (N, H/2, W, 3- Tv), where only the
lower half of the generated face is used for discrimination.

2.4 Visual quality generator

Since they use such a strong lip-sync discriminator it forces the generator to produce accurate
lip shapes. Sometimes this results in the morphed regions to be slightly blurry. To migrate this
minor loss in quality, they train a simple visual quality generator in a GAN setup along with the
generator. This discriminator does not make any checks on lip-sync and only penalizes unrealistic
face generations. The discriminator consists of a stack of convolutional blocks. Each block consists
of a convolutional layer followed by a Leaky ReLu activation.

2.5 Summary

The main goal of this library is to generate mouth movement for videos, to dub them. Because
of this it also works better on videos than on pictures. This is also because they feed the network
five continuous frames, instead of one frame when predicting the mouth movements. When using
a picture it also works better when the persons teeth aren’t visible. This is a known problem with
mouth movement generation, thus it’s outside of the scope of this thesis.

It’s also trained English data [4]. My goal is to see if there are any differences to when it’s
fine-tuned on Dutch data.

Sometimes the face-detection doesn’t work 100%. These times you can clearly see that not the
whole chin region is included in the generated frames. This results in a moving mouth, but the
chin is standing still, which is not realistic.

At the moment when you feed the model a picture or video with multiple people in it, it gen-
erates the mouth movement of the first face it detects. My goal is when you feed it a picture with
multiple people that you can choose for which person you want to predict the mouth movements.

3 Dutch Data

Since the original model is trained on English data, I'll be fine-tuning the model on self collected
Dutch data.

.9

DUTCHDATA §Eg
ROADMAP

Cleaning Data

Clean all the collected data so
that it looks like the original
data. This step makes sure the
data is ready to start training
o

Original Data

Get to know the original used
dataset better, so you know
hows you data needs to look like.

Fine-tuning

Start fine-tuning the model. This
can be done with the visual
quality discriminator or without
it.

il

Multiple People VS

One Person :

Find out what's the difference COIIeCtIng Data
between data of multiple people

and data of just one person. Collect all the necessary data.

Figure 5: Roadmap of how I got all the data ready to fine-tune the model.

3.1 Original Data

The original data on which the model is trained is a dataset from BBC television. It’s the Lip
Reading Sentences 2 (LRS2) dataset [4]. The videos in there are heavily preprocessed. They are
sync-corrected, and every video is only max one sentence long resulting in a max length of ten
seconds. The person that’s talking is also always visible and there are a lot of different people in all
the clips. They made sure to split the training and validation set so that the same person doesn’t
show up in both (so you won’t overfit on one specific person). This means that these little video
clips are cut from longer video’s, done by people. The dataset consists of approximately 50GB of
data. This is a lot of data to clean yourself.

3.2 Multiple people VS one person

The original data consists of a lot of different people. When I was searching for Dutch data, I
concluded it’s hard to find a lot of videos of different people. When you have multiple people you
also need to be sure that every person approximately shows up the same amount of times. If one
person shows up a lot more than all the other people, the model will overfit on that one specific
person. So I decided to just focus on one person and see what the results will be when the model
is fine-tuned on one specific person.

This is when a decided to use the videos of VPRO Zondag met Lubach, it’s a Dutch talkshow
comparable to Last Week Tonight with John Oliver.

3.3 Collecting data

Once I knew which video clips I was going to use, I downloaded 80 videos, since these came from
a YouTube channel, it was easy to just put them in a playlist and download the whole playlist.

3.4 Cleaning data

When I had enough videos I started by cutting the videos in smaller video clips, because the origi-
nal videos were 5 to 20 minutes long. I wrote a script that looped over all the videos and cut them
in smaller clips. To do this I used the Pydub| and MoviePy| libraries. Pydub is used to get the
timestamps of all the silences in a video. While MoviePy is used to cut a video in smaller clips.
Pydub returns a list with all the timestamps of when silent or non-silent segment starts and when
it ends.

With these timestamps I knew when to cut the video in smaller clips. Since sometimes the
non-silent parts are still longer than ten seconds I wrote an extra loop. When there was a non-silent
part longer than ten seconds it cut that part in smaller pieces of five seconds each. This is done
because feeding the model clips longer than ten seconds will use to much memory. At the end of
all this I around 5800 video clips, which should be plenty to fine-tune a model.

When the videos were cut in smaller clips I cropped each clip so only the right half of it re-
mained. This is done because most of the time Lubach is on the right side of the video. This
cropping results in smaller clips, which will later result in faster prepossessing of the data.

The data was almost cleaned enough to start training, but there is still on problem in some
clips. There were some clips where the wrong person was talking or where someone was talking
and nobody was in the frame. This results in problems during training because the model doesn’t
have a mouth to predict because there is no face in the frame or the wrong face is in the frame.

To solve this problem I wrote a script that looped over every video and checked if Lubach was
in that frame. If he wasn’t the video clip just got deleted. This resulted in leaving me left with
around 4700 video clips, which still should be plenty to train on.

3.5 Fine-tuning

Now the data is collected and cleaned it’s time to start fine-tuning the original model. There are
two ways to train the model: with or without the visual quality discriminator. The only job of this
discriminator is to check the quality of the generated outputs of the generator. Training without
it results in faster training with the downside the the generated mouth region is noticeable blurry.

First I trained without the extra discriminator to see if the lesser quality would outweigh the
longer training times. The resulting model generated really blurry mouth regions. So I decided to
start fine-tuning with the extra discriminator. Since I still had plenty of other things to do, the
extra training time didn’t matter that much.

https://www.youtube.com/channel/UCdH_8mNJ9vzpHwMNwlz88Zw
https://www.youtube.com/user/LastWeekTonight
http://pydub.com/
https://zulko.github.io/moviepy/

4 Face Detection

Sometimes the face detection to generate the mouth animation on doesn’t work perfectly. I'm
going to look deeper at why this sometimes occurs.

4.1 Face Recognition

The library uses a modified version of the face recognition library [B]. Originally it detects face
landmarks and not a box in which the face is located. So the authors of the Wav2Lip library
adjusted it so that it returns the coordinates in which the face is located.

4.2 Predicting mouth movements

When you upload a picture, the script does face detection to get the coordinates in which the face
is located. This is done because it’s useless to feed the whole image to the model, when only the
face is needed. Feeding the whole picture would require a lot more video memory.

For the next example I have used figure [6] as the input image. I've used this picture because
its a picture of the Lubach talkshow I've used in the Dutch data part.

Figure 6: The image that’s used as input.

As said in Chapter the generator is fed an image with the face and one with the lower half
masked. This can be seen in figure [7] Here you can already see how big the difference is between
the input image and the detected face that’s used for the model.

As you can see, the face region is pretty good. When I did this on the image that I used when
it gave a bad result, it also gave me the whole face. After this I ran the script again on that image
and it didn’t have the problem anymore.

This work was not for nothing, I got a better understanding of how the face detection is done.
It gave me also a better understanding how the script itself works.

What the script really does is, it predicts the face region as seen in figure [Ta] After this, it
makes a copy of this image and masks the bottom half (as seen in figure . The whole face and
the masked are both send to the model, it uses the masked face to predict the lower half on the
face. The whole face is used to know how chin and mouth looks like. This is also the reason that
the model works better with videos.

When you use a video, instead of just these two pictures being send to the model, five contin-

uous frames are send. Because of this the model has a better understanding what the face looks
like in multiple face expressions (mouth open and closed). While when you use a picture it only

10

o 20 40 (] B0 o 20 40 (] B0

(a) The detected face from the input im- (b) The detected face with the lower half
age. masked.

Figure 7: Example of what is fed to the generator when predicting the mouth movements.

has one frame of reference instead of five.

The mel spectrogram (a visual representation of audio) of the audio file is also send to the
model, because of this the model knows how many mouth positions needs to be generated. When
the model has predicted all the mouth positions they are all pasted on top of the original detected
face. This results in a video of the illusion that the person is talking.

11

5 Multiple Faces

With the original model it’s only possible to generate mouth movements when there is only one
person in the picture or video. When there are multiple people in the frame(s), the model just
generates the mouth movements of the first person that is detected. So, this is where I implemented
changes so it’s possible to choose for which person you want to generate the mouth movements
when there are multiple people in the frame(s).

Multiple Faces

Face detection Choose face

Caching
Figure out how the face
detection works If the face detection If there are multiple faces
results aren't already detected, choose the
cached, cache the results. correct face
Run script Overlay audio
Run the script with the If you selected that two
correct arguments. people need to be talking,

overlay the two audio files

5 4 _/

5.1 Face detection

When I looked deeper in how the face detection works I found out that it always returns the first
face it detects. So I changed it that it returns all the detected faces, so you can later select the
correct face.

5.2 Web App

To make this user friendly I made a web app in Flask. Without a web app it’s hard to select the
correct face.

5.2.1 Multiple people

When you upload a picture and audio file, it firsts checks how many people are in the picture. If
there is only one person in it, it just runs the script on that one person. When it detects multiple
people, it gives you a new page where you can select the correct face.

12

5.2.2 Caching

The face detection in the previous section is done outside of the script. Because of this it always
has to do it twice, one outside the script and once inside. Also when you upload a long video
(longer than 20 seconds) it takes a couple of minutes to detect those faces. It takes so long because
it needs to detect the face in every frame.

Because of these two problems I implemented a caching of the face detection. The web app
first checks if the picture or video is already cached, if this is the case it just loads the data into it
(which is instant). When it doesn’t find the cache of that picture/video, it does face detection on
it once and writes these results to a pandas data frame and then to a CSV file.

When the script is ran after the face detection, the path of the cached results is also given to
the script. Because of this it also skips the face detection part. The face detection is the part that
takes the longest of the script.

5.2.3 Multiple people talking

It’s also possible to first let the model generate the mouth movements of one person and then of
another person. If you then upload the correct audio for each person, you can make it look like
these two people are talking to each other.

When I implemented this first I had the problem that the audio of the video (the generated
mouth animation video) gets deleted and only the input audio is put on top of the new generated
mouth animated video. This happens because the model generates the mouth positions for every
frame. When this is done, it pastes all the frames back together and puts the input audio on top.
So the audio of the input video gets lost.

I added a checkbox so the model knows when it needs to overlay the input audio and the audio
of the input video. This overlay is done with Pydubl

13

http://pydub.com/

References

[1] Bram Heyns. Big data - cutting edge. 2020.

[2] K R Prajwal, Rudrabha Mukhopadhyay, Vinay P. Namboodiri, and C.V. Jawahar. A lip sync
expert is all you need for speech to lip generation in the wild. In Proceedings of the 28th ACM
International Conference on Multimedia, MM 20, page 484-492, New York, NY, USA, 2020.
Association for Computing Machinery.

[3] Prajwal K R, Rudrabha Mukhopadhyay, Jerin Philip, Abhishek Jha, Vinay Namboodiri, and
C V Jawahar. Towards automatic face-to-face translation. Proceedings of the 27th ACM Inter-
national Conference on Multimedia, Oct 2019.

[4] T. Afouras, J. S. Chung, A. Senior, O. Vinyals, and A. Zisserman. Deep audio-visual speech
recognition. In arXiv:1809.02108, 2018.

[6] Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving the 2d & 3d face
alignment problem? (and a dataset of 230,000 3d facial landmarks). In International Conference
on Computer Vision, 2017.

14

	Introduction
	Computer Vision
	Generative Adversarial Network

	Wav2Lip
	Pre-trained Lip-Sync Expert
	Generator
	Penalizing inaccurate lip generation
	Visual quality generator
	Summary

	Dutch Data
	Original Data
	Multiple people VS one person
	Collecting data
	Cleaning data
	Fine-tuning

	Face Detection
	Face Recognition
	Predicting mouth movements

	Multiple Faces
	Face detection
	Web App
	Multiple people
	Caching
	Multiple people talking

